ANSWER TO HOMEWORK I

Solution 1. (1)Let

$$
\frac{d x}{d t}=5
$$

then along the characteristic curve $x(t)=5 t+a$,the partial differential equation becomes

$$
\frac{d u}{d t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} \frac{d x}{d t}=e^{3 t}
$$

so that

$$
u(x(t), t)=\frac{1}{3} e^{3 t}+K
$$

where K is a constant, and $K=u(x(0), 0)-\frac{1}{3}$, so that

$$
u(x(t), t)=\frac{1}{3} e^{3 t}+u(x(0), 0)-\frac{1}{3}=\frac{1}{3} e^{3 t}+e^{-a^{2}}-\frac{1}{3}
$$

Given the point (x, t), let $x=5 t+a$ be the unique characteristic curve passing through this point, then $a=x-5 t$ and the solution is

$$
u(x, t)=\frac{1}{3} e^{3 t}+e^{-(x-5 t)^{2}}-\frac{1}{3}
$$

(2)Let

$$
\frac{d x}{d t}=-x
$$

then along the characteristic curve $x(t)=x_{0} e^{-t}$, the partial differential equation becomes

$$
\frac{d u}{d t}=\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} \frac{d x}{d t}=0
$$

so that

$$
u(x(t), t)=K
$$

where K is a constant, and $K=u(x(0), 0)-\frac{1}{3}$, so that

$$
u(x(t), t)=u(x(0), 0)=x_{0}^{3}-1
$$

Given the point (x, t), let $x=x_{0} e^{-t}$ be the unique characteristic curve passing through this point, then $x_{0}=x e^{t}$ and the solution is

$$
u(x, t)=x^{3} e^{3 t}-1
$$

Solution 2. (1)Since $5^{2}-4 \times 1 \times 6=1>0$, then the equation is of hyperbolic type. The characteristic equation is

$$
\left(\frac{d y}{d x}\right)^{2}-5 \frac{d y}{d x}+6=0
$$

therefore let

$$
\xi=3 x-y, \quad \eta=2 x-y
$$

then

$$
\begin{aligned}
u_{x} & =3 u_{\xi}+2 u_{\eta}, \\
u_{y} & =-u_{\xi}-u_{\eta}, \\
u_{x x} & =9 u_{\xi \xi}+12 u_{\xi \eta}+4 u_{\eta \eta}, \\
u_{x y} & =-3 u_{\xi \xi}-5 u_{\xi \eta}-2 u_{\eta \eta}, \\
u_{y y} & =u_{\xi \xi}+2 u_{\xi \eta}+u_{\eta \eta},
\end{aligned}
$$

substitute the above relations into the equation, we have

$$
u_{\xi \eta}=0,
$$

which implies for any smooth functions F and G,

$$
u=F(3 x-y)+G(2 x-y),
$$

is a solution to the equation.
(2)Since $(2 y)^{2}-4 y^{2}=0$, then the equation is of hyperbolic type. The characteristic equation is

$$
y^{2}\left(\frac{d y}{d x}\right)^{2}+2 y \frac{d y}{d x}+1=0
$$

therefore let

$$
\xi=\frac{y^{2}}{2}+x, \quad \eta=y
$$

then

$$
\begin{aligned}
u_{x} & =u_{\xi} \\
u_{y} & =y u_{\xi}+u_{\eta}, \\
u_{x x} & =u_{\xi \xi}, \\
u_{x y} & =y u_{\xi \xi}+u_{\xi \eta}, \\
u_{y y} & =u_{\xi}+y^{2} u_{\xi \xi}+2 y u_{\xi \eta}+u_{\eta \eta},
\end{aligned}
$$

substitute the above relations into the equation, we have

$$
u_{\xi \eta}=6 \eta
$$

which implies for any smooth functions F and G,

$$
u=y^{3}+y F\left(\frac{y^{2}}{2}+x\right)+G\left(\frac{y^{2}}{2}+x\right)
$$

is a solution to the equation.
Solution 3. (1)By direct computation, we have

$$
u_{x x}+u_{y y}=-\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}+\frac{2\left(x^{2}-y^{2}\right)}{\left(x^{2}+y^{2}\right)^{2}}=0
$$

which implies $u=\log \left(x^{2}+y^{2}\right)$ is a harmonic function in $\mathbb{R}^{2} \backslash\{(0,0)\}$.
(2)Let $x=r \cos \theta, y=r \sin \theta$, then

$$
\begin{aligned}
& u_{x}=u_{r} \cos \theta-u_{\theta} \frac{\sin \theta}{r} \\
& u_{y}=u_{r} \sin \theta+u_{\theta} \frac{\cos \theta}{r}
\end{aligned}
$$

furthermore,

$$
\begin{aligned}
& u_{x x}=u_{r r}(\cos \theta)^{2}+u_{r} \frac{(\sin \theta)^{2}}{r}+u_{\theta} \frac{2 \sin \theta \cos \theta}{r^{2}}-u_{r \theta} \frac{2 \sin \theta \cos \theta}{r}+u_{\theta \theta} \frac{(\sin \theta)^{2}}{r^{2}} \\
& u_{y y}=u_{r r}(\sin \theta)^{2}+u_{r} \frac{(\cos \theta)^{2}}{r}-u_{\theta} \frac{2 \sin \theta \cos \theta}{r^{2}}+u_{r \theta} \frac{2 \sin \theta \cos \theta}{r}+u_{\theta \theta} \frac{(\cos \theta)^{2}}{r^{2}}
\end{aligned}
$$

therefore

$$
u_{x x}+u_{y y}=u_{r r}+\frac{1}{r} u_{r}+\frac{1}{r^{2}} u_{\theta \theta}
$$

which implies

$$
\Delta=\frac{\partial^{2}}{\partial r^{2}}+\frac{1}{r} \frac{\partial}{\partial r}+\frac{1}{r^{2}} \frac{\partial^{2}}{\partial \theta^{2}}
$$

Therefore for $u=\log \left(x^{2}+y^{2}\right)$, we have

$$
\Delta u=(\log r)_{r r}+\frac{1}{r}(\log r)_{r}=-\frac{2}{r^{2}}+\frac{2}{r^{2}}=0
$$

which implies that $u=\log \left(x^{2}+y^{2}\right)$ is harmonic.
Solution 4. Suppose $u^{2}(x, y)$ attains its maximum $M>0$ at $\left(x_{0}, y_{0}\right) \in D$. Let $v=u^{2}$, then

$$
a(x, y) u_{x}(x, y)+b(x, y) u_{y}(x, y)=-u(x, y)
$$

If $\left(x_{0}, y_{0}\right) \in \stackrel{\circ}{D}$, since $v(x, y)$ attains its maximum at $\left(x_{0}, y_{0}\right)$, therefore

$$
\nabla v\left(x_{0}, y_{0}\right)=0
$$

which implies

$$
v_{x}\left(x_{0}, y_{0}\right)=v_{y}\left(x_{0}, y_{0}\right)=0
$$

therefore by the equation,

$$
M=v\left(x_{0}, y_{0}\right)=0
$$

which is a contradiction, therefore $M \leq 0$, since $v=u^{2} \geq 0$, therefore $u \equiv 0$.
If $\left(x_{0}, y_{0}\right) \in \partial D$, since $v(x, y)$ attains its maximum at $\left(x_{0}, y_{0}\right)$ and $a\left(x_{0}, y_{0}\right) x_{0}+$ $b\left(x_{0}, y_{0}\right) y_{0}>0$, therefore let $\mathbf{l}=\left(a\left(x_{0}, y_{0}\right)^{2}+b\left(x_{0}, y_{0}\right)^{2}\right)^{-\frac{1}{2}}\left(a\left(x_{0}, y_{0}\right), b\left(x_{0}, y_{0}\right)\right)$, we have

$$
\begin{aligned}
\nabla_{\mathbf{1}} v\left(x_{0}, y_{0}\right) & =\left(a\left(x_{0}, y_{0}\right)^{2}+b\left(x_{0}, y_{0}\right)^{2}\right)^{-\frac{1}{2}}\left[a\left(x_{0}, y_{0}\right) v_{x}\left(x_{0}, y_{0}\right)+b\left(x_{0}, y_{0}\right) v_{y}\left(x_{0}, y_{0}\right)\right] \\
& \geq 0
\end{aligned}
$$

however, by the equation again

$$
a\left(x_{0}, y_{0}\right) v_{x}\left(x_{0}, y_{0}\right)+b\left(x_{0}, y_{0}\right) v_{y}\left(x_{0}, y_{0}\right)=-v\left(x_{0}, y_{0}\right)=-M<0
$$

which is a contradiction, therefore $M \leq 0$,since $v=u^{2} \geq 0$, therefore $u \equiv 0$.
Solution 5. (1)Since u is harmonic, the u_{x} and u_{y} are also harmonic, then by the mean value theorem,

$$
\begin{aligned}
\left|u_{x}\left(x_{0}, y_{0}\right)\right| & =\left|\frac{1}{\left|B\left(x_{0}, y_{0}\right)\right|} \iint_{B_{r}\left(x_{0}, y_{0}\right)} u_{x} d x d y\right| \\
& =\left|\frac{1}{\left|B\left(x_{0}, y_{0}\right)\right|} \int_{\partial B_{r}\left(x_{0}, y_{0}\right)} u \cdot n_{x} d S(x, y)\right| \\
& \leq \frac{C}{r} \max _{\partial B_{r}\left(x_{0}, y_{0}\right)}|u|
\end{aligned}
$$

where C is a sufficiently large constant independent of r. Similarly, we have

$$
\left|u_{y}\left(x_{0}, y_{0}\right)\right| \leq \frac{C}{r} \max _{\partial B_{r}\left(x_{0}, y_{0}\right)}|u| .
$$

Therefore

$$
\left|\nabla u\left(x_{0}, y_{0}\right)\right| \leq \frac{C}{r} \max _{\partial B_{r}\left(x_{0}, y_{0}\right)}|u| .
$$

(2)Since u is harmonic, then for arbitrary $(x, y) \in \mathbb{R}^{2}$,

$$
|\nabla u(x, y)| \leq \frac{C_{1}}{r} \max _{\partial B_{r}(x, y)}|u| \leq \frac{C_{2}\left(1+r^{2}\right)^{\frac{\gamma}{2}}}{r},
$$

where C_{1} and C_{2} are two constants. Let r goes to infinity, we have

$$
|\nabla u(x, y)|=0
$$

therefore $u(x, y) \equiv$ Const.

